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A Curiosity 
of Low-Order Explicit Runge-Kutta Methods 

By J. Oliver 

Abstract. By introducing an additional parameter into the first stage of the explicit 
Runge-Kutta process, new formulae of second and third order are derived, offering 
improved error bounds in the second-order case. 

1. Introduction. The first stage in an explicit Runge-Kutta process for the solu- 
tion of an initial-value problem for a system of ordinary differential equations, y' = 
f(x, y), at any point (xn, Yn), has hitherto been presented as being necessarily the eval- 
uation of k1 = hf(x,, yn). While there is no alternative to using the current known 
value yn if the method is indeed to be explicit in the sense of Butcher [4], there is no 
corresponding computational reason why xn should not be replaced by xn + o lh, for 
some oil chosen in the same way as the other parameters in the Runge-Kutta process. 
It might seem at first sight that this additional parameter would introduce an extra de- 
gree of freedom into the algebraic equations governing the parameters, and we shall 
show that this is indeed the case for the two-stage process. Furthermore, we obtain a 
new two-stage second-order method for which the truncation error bound is smaller than 
the previous minimum error bound found by Ralston [1]. In the three-stage case, we 
find that the number of degrees of freedom is in fact reduced by choosing oil to be 
nonzero, but nevertheless one such family of methods exists, while for four stages the 
parameters are over-determined unless oil = 0. 

The fact that cil must necessarily vanish for fourth- and higher-order methods is 
one possible explanation of why earlier authors have apparently overlooked this excep- 
tion to the general rule in the second- and third-order cases. Another reason may be 
the practice [3], [4] of considering the differential system y' = f(y) in which x is treat- 
ed as a dependent variable whose derivative is unity. Although it is usually true, as 
Butcher [3] claims, that no loss of generality results from taking f to be independent of 
x, what follows here can be viewed as a counterexample to this assertion. 

2. The General Equations. Following Ralston [1], [2] we write the general explicit 
Runge-Kutta method with m stages as 

m 
(2.1) Yn+l-y=n wiki 

i=l1 
where the w 's are constants and 

(2.2) ki = hf Xn + aih, Yn + E 3ijk1) 
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with h = xn +1 - xn and the at's and ,Bq's also constants. Defining the operators 

(2.3) D = 3/3x + (3/3y)fn and Di = ai(3/3x) + ( s (3/3y)fn, 

where fn = f(xnI Yn), and matching both the powers of h up to h4 and the operators 

in the expansion of the right-hand side of (2.1) about (xn, yn) with the corresponding 

terms in the Taylor series expansion of Yn + 1 - Yn, we obtain eight equations in the 

case m = 4 (from which the cases m = 2, 3 can readily be obtained). We give these 

equations in full, since in earlier presentations such as [2] the terms involving D1 were 

absent. 
h: (w1 + w2 + w3 + w4)f = f, 

h2: (wlDlf + w2D2f + w3D3f + w4D4f) = -Df 

h3: 2(wiDlf+w2DP+w3DP+W4D2if) = D2f, 

fy[(W2f21 + W3331 + W4f41)Dlf 

+ (w3332 + W4342)D2f + W4343D23f] = 2fyDf, 

( 4: (wlD3f+ w2D tf+ w3D3f + D 3f) Df 

1f[W01+ W4Df(34 3 D1+ W4f + 3D2f +1433) Y 

2 1~~~~~~~~2 

+ (w~ ? w )D2f+ w 
D2f] fy D2f, 

W3032 4042D2f W443 3 2 

[w2D2f3'02lDlf + W3D3fyf331Dlf + f332D2f) 

+ w4D4fy'(041Dlf + 0342D2f + 0343D3f)] = ~-DfDf, 

f,2[(w3f32f21 + W4f42021 + W4f43f331)Dlf + W4f43f32D2f] = 2f2Df. 

It is then customary to argue that these equations can only be satisfied indepen- 

dently of f(x, y) if the ratios 
(2.5) Q1fIDf (1 = 1, 2, 3, 4) and Dify 'Dfy ( = 2, 3, 4) 

are constant, which implies that 
i-l 

(2.6) i.= E , (i = 1, 2, 3, 4) 

and in particular that oi1 = 0. We now show, however, that this argument is invalid in 

the second-order case. 

3. Two-Stage Methods. Matching powers of h up to h2, and putting w3 = W4= 0 
in (2.4) yields the following three equations corresponding to the terms indicated. 

hf: w1 + w2 = 1, 

(3.1) h2fx: o,1w + a2w2 = ?2, 

h2f3f: w2321 = ?% 
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We thus have a two-parameter family when ci $0, 

(3.2) a2 = 2w + alI ) w21= 2w w =l -w2, 

including as a special case the usual one-parameter family obtained when al = 0. 
Writing the truncation error Tm in an mth-order method, applied to a single dif- 

ferential equation for ease of analysis, as 

(3.3) Tm = cmhm+l + O(hm+2), 

the coefficient c2 of h3 is here given by 

12 1 f w f+ D (3.4) c2 = gD2f - (wD2f+ w2D2f) 6fyDf - w22yDlf; 

-and, as expected, no choice of the free parameters can make this vanish independently 
of f(x, y). 

Ralston [1], [2] obtained an upper bound on Ic21 by assuming that in a suitable 
region about (x,, Yn), 

(3.5) If(x,y)I <M and Iai+if/axiayll <L+i/Mi-1, 

where M and L are constants and i +?j 2, and he showed that for l = 0 the mini- 
mum value of this bound was ML2/3, obtained by setting c2 = 2/3, and thus 

ki = hf(xn,Yn), 

(3.6) k2 = hf(xn + 2h13, Yn + 2k1/3), 

Yn+1 =yYn +k1/4+3k2/4. 

A discussion of the relevance of this type of bound to practical computation was also 
given by Ralston [ 1 ], [2]. 

Under this same assumption (3.5), we obtain from (3.4) using (2.3) and (3.2) a 
corresponding bound when a1 * 0 of 

IC< [1 ( + t2) _1ho,)l 1 ( 1-a) 

2~ ~~ ~ ~ ~~~~~ 23 3W | + 2w1 l|+6M2 (3.7) 
+11 1 +11 111 

m2 
234w2 2 3 6J 

and investigation shows that this attains a smaller minimum value, namely 7ML2/27, 
for the method 

k1 = hf(xn +h/3, Yn), 

(3.8) k2 = hf(xn + 5h/9, Yn + 2k 1 /3), 

Yn+ 1 = Yn + k1/4 + 3k2/4. 

On the basis of Ralston's truncation error criterion, therefore, (3.8) is preferable to all 
previously published second-order methods. 

4. Three-Stage Methods. When m = 3, matching of the powers of h up to h3 re- 
quires that, from (2.4), 
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wi + W2 + w3 = 1, 

wlDlf + w2D2f + w3D3f = 1-Df 

w1D2f + Wf? 2f + w3D2f = 3D2f, 

1 
(W2321 + W3331)fyDlf + w3I32fyD2f= -fyDf. 

In order to satisfy these equations independently of f, we must have 

(4.2) 21 = a2 and 031 + 032 = C3 

so that Df = oaDf (j = 2, 3). If a1 is not to vanish, then since D1 f/Df will depend 

upon f, Eqs. (4.1) can only be satisfied by requiring w1 = 0, in which case they re- 

duce to 

W2 + W3 a2W2 + C3W3 - a2w2 + 13`3 = 

(4.3) 1 
al(w2a2 + 

W3f31) 
= 0, W3332a2 6 

Note that the usual choice of a1 = 0 effectively removes the penultimate equa- 

tion of (4.3), and since w1 can then also be nonzero, the system obtained from (4.1) 

has two degrees of freedom. By contrast, we have here seven equations (4.2) and (4.3) 

in eight parameters, possessing the one-parameter solution 

(4.4) a2 = 21 = 
%= 1, 1331= 1 032 = 2, W2 = 3, W3=4 

with a1 arbitrary, and thus specifying the third-order method 

k= hf(xn + a1h,Yn), k2 = hf(xn + h/3,Yn + k 3), 
(4.5) 

k3=hf(xn +h,Yn -k1 +2k2) Yn+1 =Yn +3k2/4+k3/4. 

The coefficient c3 of h4 in the truncation error when (4.5) is applied to a single 

differential equation is 

-1 D3f + fD2f-D [(1 )f? ffy]Dfy C 216 224-[( 
(4.6) 

+ 2[(1 - 4af ?f+ Y]f2 

and under similar assumptions (3.5) on f and its derivatives for i +j S 3 the resulting 

bound on ic3i attains its minimum value of (47/216)ML3 when a1 = 1/4. Unfortunate- 

ly, this bound is nearly double the value of ML3/9 pertaining to the optimum third- 

order method with a1 = 0 advocated by Ralston [1]. 

5. Four-Stage Methods. In an attempt to find parameters which satisfy all the Eqs. 

(2.4) with al 
= 0, thus giving a four-stage method of fourth order, we follow, for the 

same reasons, the approach which proved successful in the three-stage case and put 

(5. 021 = f2 031 + 032 = a3 041 + ?42 + ?43 = a4, wl = O. 
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Using (5.1) to substitute far 021' 031' ,41 and w, in (2.4) and rearranging, we find that 
the following eleven equations must be satisfied by the ten parameters involved. 

w2 +w3 ?w4 =1 c2w2 + a3W3 + a4W4 1 2' 02w2 + C4w3 + &2w4`4 3 

2W2 + o3W3 + a3w4= , al(W3132 + W4042 + W4-43 = ?' 

o2W3032 + %2W4042 + %3w4043 = 61 2W3032 2W442 + =i34043 12' 
(5.2) 

C'1( 03W3932 + ?'4W4942 + Ct4W4343 =0, 

%0t0t3332 + 
%2a4W4142 

+ 
oa3P4W4343 8' 

w4043032 6) = 0, a2W4443f32 24- 

It is clear that the usual choice of al = 0 effectively removes three of these con- 
straints, leaving only eight equations in nine parameters, and noting that w1 need not 
then be set to zero, there are two degrees of freedom. On the other hand if we insist 
that a, $ 0, then it is possible though tedious to verify that Eqs. (5.2) are indeed inde- 
pendent, and so no four-stage explicit method with oil = 0 can be of fourth order. A 
similar situation applies if more stages are introduced in order to achieve corresponding- 
ly higher order. 

6. Conclusions. We have shown that if the parameter cil is not arbitrarily set to 
zero, then new families of second and third (but not fourth) order are obtained, and 
that on the basis of Ralston's truncation error criterion a particular one of these new 
methods (3.8) should be employed when a second-order Runge-Kutta method is to be 
used for starting the solution of an initial-value problem or changing the interval. 
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